Enterococcus faecalis Responds to Individual Exogenous Fatty Acids Independently of Their Degree of Saturation or Chain Length

نویسندگان

  • Holly E Saito
  • John R Harp
  • Elizabeth M Fozo
چکیده

Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection.IMPORTANCEEnterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporation of exogenous fatty acids protects Enterococcus faecalis from membrane-damaging agents.

Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress ad...

متن کامل

Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR.

UNLABELLED Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract that can cause nosocomial infections in immunocompromised humans. The hallmarks of this organism are its ability to survive in a variety of stressful habitats and, in particular, its ability to withstand membrane damage. One strategy used by E. faecalis to protect itself from membrane-damaging agents, includ...

متن کامل

The Two Functional Enoyl-Acyl Carrier Protein Reductases of Enterococcus faecalis Do Not Mediate Triclosan Resistance

UNLABELLED Enoyl-acyl carrier protein (enoyl-ACP) reductase catalyzes the last step of the elongation cycle in the synthesis of bacterial fatty acids. The Enterococcus faecalis genome contains two genes annotated as enoyl-ACP reductases, a FabI-type enoyl-ACP reductase and a FabK-type enoyl-ACP reductase. We report that expression of either of the two proteins restores growth of an Escherichia ...

متن کامل

Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids.

Lipoteichoic acids (LTAs) from various bacterial species, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Listeria monocytogenes, were examined for the ability to induce secretory and cellular responses in a pure population of bone marrow-derived mononuclear phagocytes. Some of the highly purified LTAs, in particular LTAs from Bacill...

متن کامل

Characterization of Enterococcus faecalis isolates originating from different sources for their virulence factors and genes, antibiotic resistance patterns, genotypes and biofilm production

In this study, 72 Enterococcus faecalis isolates originating from humans (n=39), dogs (n=26) and cats (n=7) were investigated for some virulence factors, some virulence genes, antibiotic resistance phenotypes, randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) patterns and biofilm production. Of the isolates, 31 (43.1%) were positive for gelatinase, 11 (15.3%) for aggregati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2018